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Abstract

In order to solve the flowrate measurement problem of gas–liquid two phase flow widely existing in gas wells of Daqing oil field in
China, a new method has been developed, which is based on the combination instrument of turbine flowmeter and conductance sensor
with petal type concentrating flow diverter. The turbine and conductance signals under 104 different flow conditions have been acquired
through oil–gas–water three phase flow loop experimental facility. To determine the flow pattern in measurement channel, attractor mor-
phologic characteristics are extracted from the conductance signals. For the total flowrate measurement, based on the turbine fluctuant
signals of gas–liquid two phase flow, a statistical model with the average error of 7.9% is set up. With regard to the water cut measure-
ment, the characteristics in time and frequency domains are extracted from the fluctuant conductance signals, and then employing the
Support Vector Machine (SVM) soft measurement model used in high-dimension data fitting, the water cut prediction is realized with the
average error of 0.038. The results show that the combination instrument of turbine flowmeter and conductance sensor with petal type
concentrating flow diverter would be useful in measuring the total flowrate and water cut of gas–liquid two phase flow in gas production
wells.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Gas–liquid two phase flow is a common flow phenom-
ena existing in petroleum industry, chemical engineering
and other related process production, the flow measure-
ment is a basic problem in these fields. Because the flow
structure and distribution of phase interfaces change with
time and space, the gas–water two phase flow measurement
is much more difficult than that of single phase flow, which
remains unsolved thoroughly. Recently, with the increasing
of gas production wells exploited in Daqing oil field of
China, searching for an effective method to measure the
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flowrate of gas–liquid two phase flow has become more
and more important.

In early studies, Jones (1983), Mendes and Marvillet
(1996) and Oddie and Pearson (2004) had made detailed
review in the gas–liquid two phase flow measurement tech-
niques. Because of the complicated and variable character-
istics of gas–liquid two phase flow patterns, single sensor
cannot implement the precise flowrate measurement, how-
ever the combination of two or more kinds of sensors
makes precise flowrate measurement possible (Abdul-Raz-
zak et al., 1995a,b; Frank et al., 1977; Huang et al., 2005;
Shim and Lee, 1998; Shim et al., 1996). Among the combi-
nation methods, the one based on combination instrument
of single phase flowmeter with densimeter or void fraction
meter come to be one of the main trends of current two
phase flow measurement because of its simple structure
and easy realization.
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In recent years, much progress had been achieved by
employing turbine flowmeter to measure multiphase flow-
rate. Mark et al. (1990) provided a measurement of the
liquid flowrate by analyzing the pulse output information
from a standard turbine meter in gas–liquid two phase
flows whose void fraction is up to 20%, and they also
pointed out that the single phase performance remained
unaffected when using turbine flowmeter measure two
phase flow. Johnson and Farroll (1995) put forward a tech-
nique to determine the void fraction of vertical upward
gas–water two phase flows by measuring the turbine meter
signal, the test results showed that the measuring precision
could be ±0.02 when the void fraction was below 10%.
Abdul-Razzak et al. (1995a) had used the combination of
turbine flowmeter and void fraction meter to measure the
mass flowrate of refrigerant liquid–vapor two phase flow,
they also researched different prediction model of mass
flowrate, and pointed out that the volumetric homoge-
neous model showed better performance at high flowrate.
Abdul-Razzak et al. (1995b) had also used the combination
of turbine flowmeter and Venturi flowmeter to measure the
mass flowrate of refrigerant liquid–vapor two phase flow
and pointed out this combination was superior to the com-
bination of voidage meter with either turbine flowmeter or
Venturi flowmeter. Minemura et al. (1996) proved the fea-
sibility of measuring the mass flowrate, volume flowrate
and void fraction of gas–liquid two phase flow accurately
using the turbine flowmeter through experiments, and they
also indicated that the mass flowrate and volume flowrate
could be expressed as the function of rotor speed and pres-
sure drop across turbine flowmeter. Shim and Lee (1998)
suggested a method to measure the flowrate of individual
phase by setting turbine flowmeter and Gamma densimeter
at upstream and downstream separately of the vertical
upward pipe, they also showed that the output signals of
turbine flowmeter only depended on the volume flowrate
of gas and liquid. Ogawa et al. (1998) designed a new flow-
rate measurement system based on the former research
results of two phase flow measurement using turbine flow-
meter, and finally an instrument to measure the flowrate of
oil–gas–water three phase flows was carried out through
tests of air–high viscous liquid mixtures.

The determination of the void fraction of two phase flow
has great significance to the optimization of industry pro-
cess and flow control. Because of the simple structure and
the ability to get one-dimensional continuous signals related
to the fraction of fluid, the impedance method has been
widely used in this field. Hardy and Hylton (1984) deter-
mined the void fraction and flow velocity by using string
impedance probes to simultaneously measure the conduc-
tance and capacitance signals of two phase flow, the string
probe instrumentation proved to be capable in measure-
ment of either air–water or steam–water flows and demon-
strated an ability to measure a wide range of flow velocities
and void fractions. Ma et al. (1990) had pointed out that
impedance method is an effective way to measure the void
fraction and they established a theoretical measurement
model of phase fraction based on impedance signals, and
the test results showed that most of the measured void frac-
tions are within a ±10% errors band as compared with the
actual void fraction. Lucas et al. (2000) designed and con-
structed a local six-electrode conductivity probe to simulta-
neously measure the local solids volume fraction and the
local solids axial velocity with high precision in solids-water
pipe flows. To investigate the relationship between void
fraction and volume-averaged impedance in air–water mix-
tures, Yang et al. (2003) had used styrofoam spheres, whose
relative permittivity was negligible compared to that of
water to simulate the gas bubble, they got the measurement
result whose deviation maintained within 0.5% when the
void fraction range is from 0 to 0.1.

With the developing of modern signal processing tech-
niques, there has been much progress in flow parameters
measuring methods based on the soft measurement tech-
niques (Jin et al., 2006; Peng and Mi, 2006; Peng and
Liu, 2006). The Support Vector Machine (SVM) (Vapnik,
1995; Vapnik, 1999) is a newly developed soft measurement
method based on the statistical learning; it could make
highly precise estimation to measured data without any
specific model. Also, because the SVM does not have the
local minimization problem and its computational com-
plexity has no relation with the dimension of input sam-
ples, it has been gradually applied to the estimation of
phase fraction in multiphase flow (Jin et al., 2006; Peng
and Mi, 2006).

Although there has been some achievement in the mea-
surement of two phase flow using the turbine flowmeter
and impedance sensors, the measurement precision cannot
be guaranteed except under low gas fraction conditions,
furthermore, the measurement results are still greatly influ-
enced by the flow patterns. There also exist many difficul-
ties in establishing a precise prediction model for volume
fraction measurement, so it is significant to study on the
soft measurement method to measure volume fraction
and flowrate of gas–liquid two phase flow. In this study,
we have used the combination instrument of turbine flow-
meter and conductance sensors with petal type concentrat-
ing flow diverter to acquire the fluctuant conductance
signals in the concentrating flow measurement channel,
which can improve the uniformity of gas–liquid two phase
flow and be useful for the total flowrate measurement. We
also have, respectively, used two kinds of methods to deter-
mine the flow pattern, one is the traditional statistical sig-
nal analysis, and the other is the chaotic attractor
morphologic description method of nonlinear time series.
Then we extracted several characteristics in time and fre-
quency domains to fulfill the estimation of water cut by
applying them to SVM. Combined with the measurement
results of total flowrate gotten from turbine flowmeter,
the final results show that the combination instrument of
turbine flowmeter and conductance sensor with petal type
concentrating flow diverter could be useful in measuring
the total flowrate and the water cut of gas–liquid two phase
flow in gas production wells.
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2. The experimental flow loop facility and data acquisition

The gas–water two phase flow experiments in vertical
upward pipe were carried out in oil–gas–water three phase
flow laboratory of Tianjin University, the related measur-
ing instruments are shown in Fig. 1. The instrument is com-
posed circuit tube, conductance sensors, a turbine
flowmeter and a petal type concentrating flow diverter.
The diverter is mainly composed of switching circuit, con-
centrating petal, pushing and pulling mechanism, power-off
switch, adjusting mechanism and micromotor. The work-
ing process is like this, when the switching circuit provides
working voltage to the micromotor, the micromotor
enables the pushing and pulling mechanism, which makes
the petal open or close, when the petal opens to a certain
position, the power-off switch turns-off the switching cir-
cuit. The adjusting mechanism aims to adjust the open
degree of the petal. The petal is constructed by reinforce-
ment and nylon cloth, when the petal opens fully, the ring
borders of it clings to the inner wall of the pipe, forcing the
fluid flow into the concentrating channel through the petal
type diverter.

The experimental flow loop facility is shown as Fig. 2,
it mainly include three parts, which are separately the oil/
gas/water three channels supply system, the simulation oil
pipe and the control system. The flowrate of the oil, gas,
water can be controlled by the opening of valve through
the control system, in order to get the different flowrate
and water cut. The flowrate of gas and water phase are,
respectively, measured by Vortex flowmeter and Roots
flowmeter, the results from which are also recorded and
displayed by the computer of the control system. The
height of the simulation well pipe is 6 m, including two
(1) Combination instrument   

Conductance sensors 

Turbine flowmeter 

Circuit tube 

Petal type concentrating 

flow diverter 

Fig. 1. Combination instrument and
Plexiglas pipes with inner diameter of 125 and 80 mm,
respectively, they could be controlled to incline within
the scope of 0–90 deg. There is a quick closing valve on
the well pipe whose inner diameter is 125 mm, which is
used to measure the water holdup of two phases mixed
fluid. The instruments used in this research are all in the
oil industrial standard size, the detailed structure is shown
in Fig. 1, the outer diameter of the instrument is 23 mm,
inner diameter is 18 mm. The whole measurement system
can be divided into several parts, which are turbine flow-
meter, conductance sensors, exciting signals generating cir-
cuit, respectively, signal modulating module, data
acquisition device and signal analysis software. The mea-
surement circuit is embedded inside the instrument, and
signals were transmitted to the data acquisition and pro-
cessing system through cable connected outside the circuit
tube. Through the concentrating diverter, the fluid flow
into the measurement channel, then passing the turbine
flow meter and the conductance sensors, the fluid flow
out from the liquid holes at the upper place of the instru-
ment. The measurement system uses the 20 kHz constant
voltage sine wave to excite, and the virtual value of excit-
ing voltage is 1.4 V. The signal modulating module is
mainly constitutes by three modules, which are differential
amplifier, sensitive demodulation and low pass filter. The
data acquisition equipment is selected from the National
Instrument Company’s product PXI 4472 data acquisition
card, which is based on the PXI main bus technology,
equipped with eight channels and synchronized acquiring
function. The data processing part is realized through
graphical programming language LABVIEW 7.1 wrapped
in the data acquisition card, which can realize real time
data waveform displaying, storing and analyzing.
       (2) Flow loop facility   

experimental flow loop facility.



Fig. 2. Configuration of experimental flow loop facility.
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The experimental mediums are air and tap water. The
water at certain flowrate is injected into pipe firstly when
we do the experiments, and then the gas flowrate Qg is
gradually increased. After completing configuring the ratio
of gas and water phase each time, we observe and record
the flow patterns of gas–liquid two phase flows. The total
flowrate Qt of gas–water two phase flow ranges from 0.1
to 2.5 m3/h in the experiments. The sampling frequency
of conductance signal is 400 Hz; sampling time is 60 s at
each test point. The sampling frequency of turbine flowme-
ter is 1 Hz, sampling time is 100 s, and the resultant sample
size is 100 data points at each flow condition. The sampling
frequency and sampling time are very sensitive to the mea-
surement; there had been serious consideration for this
when choosing them. Based on the existing experiment
data and references related to this, the inherent frequency
of gas–liquid two phase flow will not exceed 50 Hz; from
the Shannon theory the sampled signal can be recurred as
long as the sampling frequency is twice more than the
inherent frequency of the sampled parameter. Also, as
the Fig. 8 showing, the inherent frequency of gas–liquid
two phase flow is just distributed within 40 Hz, so the sam-
pling frequency 400 Hz in this paper is reasonable, which
could not only recur the signal fully, but also attain high
precision. When setting up the prediction model for total
flowrate and water cut, the average value of the turbine sig-
nal is only used, therefore the sampling frequency does not
need to be very high. The sampling frequency of 1 Hz is
selected, but even this frequency could still reflect the
change of the total flowrate. Measurement signals under
104 gas–water two phase flow conditions have been
acquired in the experiment all together.

Fig. 3 shows the motion process of bubble flow recorded
by high speed VCR (Video Camera Recorder), the num-
bers and the arrows indicate the motion direction. When
the air fraction is low, air phase is the dissipation phase
and the water phase is continuous phase. The air dissipates
in flowing upward fluid at the form of different size bubble
randomly, and the phase interface is clear. The bubbles
appear various shape, most of them present flat sphere of
different size, the bubble size increases with the increasing
of air fraction. In total, the bubble flow has uniform flow
structure. Fig. 4 shows the motion process of slug flow
recorded by high speed VCR. When the concentration of
bubbles in the bubble flow increase, bubbles begin to aggre-
gate. As the diameter of bubble growing, close to the inner
diameter of the pipe, it evolves into a projectile bubble.
While the big projectile type bubble passes through, the
small bubbles around are forced to fall down, the phase
interface is comparatively clear at this time; once the bub-
bles meet the following liquid slug, there comes collision,
then the small bubbles amalgamate into the liquid group,
and flow upward, the interface becomes blur at this
moment, and the flow condition is complicated. As the
flowrate of gas increases, the length of projectile type gas
bubble grows.

Figs. 5 and 6 show the turbine and conductance fluctu-
ant signals of typical flow conditions sampled by measuring
instrument, and the flow patterns marked in figures were
that observed by eyes. Because the flow patterns cannot



Fig. 3. Motion process of bubble flow.

Fig. 4. Motion process of slug flow.
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be recognized visually and there is no principle for flow
pattern classification of flow in concentrating flow channel
also, the flow pattern classification in concentrating flow
channel can only be carried out by observing the flow pat-
terns before the flow enters into the concentrating flow
channel and refer to the classification criterion of non-con-
centrated flow. From Figs. 5 and 6, the similar fluctuant
features can be seen from the turbine and conductance fluc-
tuant signals at same flow condition. The curves of top
three flow conditions show stochastic, small amplitude
oscillation, which is just the feature of random motion of
bubble groups dispersed in water. The big amplitude fluc-
tuation occurs on the curves of three flow conditions
below, coincident with the character of slug flow, in which
air slug and liquid slug appear intermittently and alter-
nately. The flow patterns characteristics gotten from the
fluctuant signals are consistent with that observed before
the flow enter into the diverter channel, it provides a
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reference for the flow pattern classification using nonlinear
method in the following discussion.
3. The conductance sensor signal statistical analysis

The research on statistical flow patterns classification
has been carried out for many years based on engineering
measurable stochastic signals. Jones and Zuber (1975),
Vince and Lahey (1982), Matsui (1984), Kelessidis and
Dukler (1989) had all studied the flow pattern classification
using probability density function and power spectral den-
sity of engineering signals, by analyzing the distribution
profiles of these, they had gotten satisfied classification
results.

Probability density function (PDF) can manifest the
characteristics of the original fluctuant signals and is
defined as Eq. (1), which means that the signal is divided
into certain intervals equally; the probability Pi is expressed
as the ratio of number of signal amplitude in each interval
and the sample size.
P i ¼
ni

N
ð1Þ

where Pi is probability density, ni is the number of signal
amplitude in each interval, N is the sample size.

In order to verify the validity of PDF for flow pattern
classification of flow in concentrating flow channel, PDF
distribution of 6 flow conditions at different gas flowrate
are shown as Fig. 7, of which the liquid flowrate is
1.01 m3/h. From the results of PDF, we can see that all
the peak values under different flow conditions are distrib-
uted between �1.0 and 1.0, furthermore, the peak value of
PDF under slug flow conditions is obviously higher than
that under bubble flow conditions.

Power spectral density (PSD) can reflect the distribution
of original signals at different frequency band through the
investigation of statistical characteristics in frequency
domain after Fourier transformation, and the discrete
equation is shown as follow:

SZðwÞ ¼
1

N

XN�1

n¼0

RZðsÞe�jwn ð2Þ

where RZ(s) is the auto correlation function of discrete sig-
nal Z(t), it is defined as follow:

RZðsÞ ¼ limT!1
1

T

Z T

0

zðt þ sÞzðtÞdt ð3Þ

Fig. 8 is the power spectral density of the flow under
conditions of which gas flowrate changes with the liquid
flowrate maintains at 1.01 m3/h. As the figure shown, the
power of all the flow conditions disperse from 0 to
35 Hz, and increase with the increasing of gas flowrate,
but there is no obvious boundary can be seen form the
power peak of different flow patterns, and the location of
the power peak is random relatively. No obvious character-
istics can be found to identify the bubble flow and slug flow
from the PSD.

From the analysis of PDF and PSD above, the results of
flow pattern classification are not satisfactory as expected.
Although amplitude of PDF can roughly classify the flow
patterns, the selection of criterion is subjective in some
sense, which is not favorable for the correct classification
of flow patterns. It is necessary to find new methods to ful-
fill the quick and correct classification of flow patterns.

4. The chaotic attractor morphologic analysis of conductance

signal

In early study, Franca et al. (1991) proposed the nonlin-
ear time series analysis for the flow pattern classification.
Using nonlinear dynamic method to analyze the character-
istics of two phase flow measurement fluctuant signals
could be useful exploration for revealing and understand-
ing the flow pattern transmission mechanism which cannot
be described accurately by mathematical model because of
the complexity and uncertainty it owns. Recently, Annunz-
iato and Abarbanel (1999) put forward attractor morpho-
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logic description method, and applied it to flow pattern
classification. The research results indicate that the method
possesses quick computation characteristic and can get
good results of the flow patterns classification. Llauro
and Llop (2006) analyzed the flow patterns of gas–solid
two phase flow using this method and got good classifica-
tion results too. Xiao and Jin (2007) employed the method
to study the pressure fluctuant signals of gas–liquid two
phase flow in vertical upward pipe, and realized the effec-
tive classification of flow patterns.
4.1. The attractor moments

In order to study the attractor shape, the original signal
should be taken phase space reconstruction based on
Takens’s embedding theorem (Takens, 1981) at selected
certain delay time and embedding dimension. Takens’s
embedding theorem can be described as following, for arbi-
trary time series z(it), i = 1,2 . . . ,n (t is sampling interval, n

is the sample size), if the embedding delay time is selected
as s, and the embedding dimension as K, the vector point
in phase space can be represented as follow:

~XðkÞ ¼ fx1ðkÞ; x2ðkÞ; . . . ; xN ðkÞg
¼ fzðktÞ; zðkt þ sÞ; . . . ; zðkt þ ðK � 1ÞsÞg ð4Þ

where k = 1,2, . . . ,M, M = n � (K � 1) * s/t denotes the
total points of attractor after phase space reconstruction.

The shape and structure of chaotic attractor in phase
space is the important base of determining the movement
states of nonlinear system. Studying the attractor shape
in two-dimension spaces, we only need to care about two
coordinates Xi = z(it), Yi = z(it + s), where z(it) is the
observed time series, t is sampling interval and s is the
delay time increasing from zero.

Figs. 9 and 10 show the evolving of the two-dimension
attractor with increasing delay time s of typical bubble
and slug flow conditions, respectively. It can be seen from
the figures that two-dimension attractor are compressed
near the first and third quadrants when s is very small
and unfold gradually with the increasing of s, but when s
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increases to certain value (12.5–17.5 ms) the attractor
shape begin to reverse suddenly and lose the topological
shape in unfolding process. The trend can also be seen that
the decentralization degree to the bisector of first and third
quadrants increases with the increasing of s, while that to
the second and fourth quadrants decreases with the
increasing of s. Annunziato and Abarbanel (1999) pointed
out the morphological differences of the different flow pat-
terns are evident, but the description of the attractor shape
is quite difficult because it depend strongly by the time lag.
Because of the difficulty existing in the description of
attractor morphology and the subjectivity in classifying
the flow patterns, there has proposed attractor morpho-
logic characteristics method in this study, which is more
objective.

In this study, the methods proposed by Annunziato and
Abarbanel (1999) and Llauro and Llop (2006) are used,
which mainly involves selecting bisector of first and third
quadrants (called principal axis), bisector of second and
fourth quadrants (called secondary axis) and original point
to study the symmetry of attractors. The distances of each
point on attractor to the two axes and original point can be
defined as followed:
d1;i ¼
ffiffiffi
2
p

2
ðX i � Y iÞ ð5Þ

d2;i ¼
ffiffiffi
2
p

2
ðX i þ Y iÞ ð6Þ

d3;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

i þ Y 2
i

q
ð7Þ

with every distance it is possible to define some moments
with order j as follow:

Mm;jðsÞ ¼
PN

i¼1dj
m;j

N
ð8Þ

where N is the number of samples and m = 1,2,3 denotes
the kind of distance considered.

Starting from s = 0, the attractor is compressed on the
principal axis when s increases, these moments describe
the morphological evolution during the unfolding process
of the attractor. The moments evolve from the linear value
(for s = 0) to nonlinear one. Finally we can outline that the
even moments are always positive and describe the scatter
of the attractor, while the odd moments are symmetry
descriptors.
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Fig. 9. Typical attractor shape of bubble flow at different delay time (Qw = 1.01 m3/h, Qg = 0.27 m3/h).
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4.2. The extraction of attractor morphologic characteristics

The attractor corresponding to increasing delay time s
from zero is called dynamic attractor. Combining with
attractor moments, the curve Mi,j(s) � s of attractor
moments of dynamic attractor changing with delay time s
can be figured out. Further, the influence of the selection
of delay time can be weakened by defining new variables.

After certain time delaying if the curve Mi,j(s) � s
appears maximum or minimum, then the corresponding
delay time is defined as transform delay time sf. If there
is no extremum, the delay time corresponding to suddenly
changing of slope of the curve can also be called as the
transform delay time sf. The part before sf is called first
area and the part after sf is called second area.

The first area represents the unfolding process of attrac-
tor from the compressed state at small delay time to topol-
ogy structure at suitable delay time. This area is
approximately linear, so the slope of the area can serve
as characteristic, namely, attractor morphologic character-
istics, denoted as SMi,j, and the following equation should
be satisfied.

Mi;jðsÞ � SMi;j � sþ IMi;j ð0 6 s 6 sf Þ ð9Þ

where IMi,j is the intercept of curve. In interval of
0 6 s 6 sf fitting the attractor moments and delay time s
using minimal least square method, the approximately
slope of curve in first area, i.e. attractor morphologic char-
acteristic, can be gotten. Obviously, the attractor morpho-
logic characteristic has no certain relation with the value of
delay time, so the error brought by the improper selection
of delay time can be weakened.

The second area after sf reflects the irregular state when
attractor structure comes to reverse, so the curve Mi,j(s) � s
behaves as fluctuating or slope changing suddenly.

The relations between two-dimension attractor
moments of M1,2, M2,2 and embedding delay time are
shown in Fig. 11. As the figure shown, the curves
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M1,2 � s and M2,2 � s could both be found extremum, so
the corresponding delay time can be selected as sf whose
value is about 10 ms. Calculating the slope of curve and
getting attractor morphologic characteristics, we can use
them to identify the flow patterns.
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4.3. The flow pattern classification
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characteristics of each order of flow patterns under 104
flow conditions and the results are shown as Fig. 12.

As Fig. 12 shown, only SM1,2 and SM2,2 two character-
istics are sensitive to flow patterns and have good classifica-
tion results for most flow conditions. So these two
characteristics are selected as effective characteristics group
for flow patterns classification. Fig. 13 show the flow pat-
terns distribution of 104 flow conditions on the plane
SM2,2–SM1,2 constituted with SM1,2 and SM2,2. As the fig-
ure showing, the plane can classify bubble and slug flow
patterns and separating point locates at the crossing of
the two dot line in the figure.

Observing the figure carefully, we can see that only 4 flow
conditions are not identified correctly, of which two bubble
flow conditions locate wrongly in slug identification area
and two slug flow conditions locate in bubble identification
area. The final result is that only 4 of 104 flow conditions get
wrong classification and the accuracy is higher than 96%.
The research results indicate that the attractor morphologic
characteristics are helpful to identify the flow patterns of
flow conditions in the experiment, making the flow patterns
be classified linearly, which would be useful guidance for the
studying of complex gas–liquid two phase flow.

5. The turbine flowmeter model in gas–water two phase flow

The turbine flowmeter is a kind of velocity type flowme-
ter which is composed of turbine, bearing and the pream-
plifier. The turbine is pushed to rotate when the flow
along the axial line of the pipe impacts the blades of flow-
meter. At the same time, the blades cut through the mag-
netic lines excited by electromagnet periodically, change
the magnetic flux of the coils as well. Based on the electro-
magnetic induction principle, fluctuant electric potential
signals will be inducted in the coils, whose frequency is in
direct ratio to the flowrate of the measured flow. The con-
stant of the instrument is an important parameter, which
shows the number of impulse output by every cubic meter
of flow. It is usually calibrated under normal temperature
in clean water before being used. The output signals from
the turbine transmitter is input into the display instrument
after being amplified through the preamplifier, and then the
flowrate measurement is fulfilled, and the relationship
between the rotate speed of the turbine and the flowrate
is showed as follow:

f ¼ KðQt � Q0Þ ð10Þ

where Qt is the total flowrate (m3/h), Q0 is the threshold
flowrate of the turbine flowmeter (m3/h), f is the rotating
speed of the turbine (Hz), K is the meter factor.

The research object is the fluid in the concentrating
channel, as the diameter of flow channel after concentrat-
ing diverter is very small (inner diameter is 18 mm), the
velocity profile of fluid in the concentrating channel tends
to be uniform, which can reduce the influences of flow pat-
terns on the measuring characteristics of the turbine flow-
meter, making the responses of turbine flowmeter shows
reasonable correlation with the total flowrate of gas–liquid
two phase flow, which means there would be total flowrate
measuring results with acceptable precision.

According to the turbine fluctuant signals and the corre-
sponding flowrate data, we can get the statistical model for
total flowrate prediction as Eq. (11) and the results are
shown as Fig. 14.

Qpre ¼ ð�1:07428E � 4Þf 2 þ 0:04128f � 0:55025 ð11Þ

The error is calculated with Eqs. (12) and (13) APE is
the average percent error, and AE is the average error. Ti

is the predicted value, Yi is the experimental value, N is
the size of sample data.

APE ¼ 1

N

XN

i¼1

T i � Y i

T i

���� ���� ð12Þ

AE ¼ 1

N

XN

i¼1

jT i � Y ij ð13Þ

From the prediction results of total flowrate shown as
Fig. 15 based on the statistical model, we can know that
the average error is 0.089 m3/h and the average percent
error is 7.9%, which means the statistical model based on
the turbine rotating speed data could be a acceptable pre-
diction model for total flowrate.

The turbine flowmeter is mostly used to measure the sin-
gle phase flow; the flow pattern will affect its measurement
precision when used in two phase flow. The total flowrate
model is set up without considering the influence of flow
patterns, so there should be some error. But for an indus-
trial instrument and measurement, the measuring error of
7.9% is acceptable.
6. The water cut soft measurement technique

The learning method based on SVM has attracted more
and more attention in the academic fields, and it also has
been widely applied to solve the classification and regression
problems in the soft measurement modeling area. The most
obvious characteristic of SVM is the structural risk minimi-
zation principle it has adopted, which is fit for small training
sample, and its strong generalization ability. Besides, SVM
has skillfully solved the problems such like complex compu-
tation, dimension disaster, local minimization and so on, by
using one kernel function to substitute the inner product
operation in high-dimension space after turn the nonlinear
problem into a linear problem in high-dimension space.
6.1. The characteristics extraction of conductance signal in

time and frequency domains

Choosing proper characteristics is the key step using
Support Vector Machine (SVM) method to predict water
cut, which means the characteristics chosen should reflect
features of the original signals as much as possible. In this
study, we have extracted 11 indexes from fluctuant
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conductance signals in both time and frequency domains as
the characteristic data set of SVM, which include maxi-
mum value (Max), the minimum value (Min), the average
value (Z), the standard deviation (SD), the asymmetric
coefficient (CS) the kurtosis function (CK) in time domain,
the four coefficients a1, a2, a3, a4 of a linear prediction
model in frequency domain, and the average value of tur-
bine rotate speed.

The maximum and minimum values could well reflect
the conductivity of two phase flow, showing the fluctuant
degree of the holdup of the non-conductible phase, which
is in close relationship with the evolvement of the flow pat-
terns; the average value reflects the average of fluctuant
conductance signals; the standard deviation shows the dis-
crete degree of the measured data; the asymmetric coeffi-
cient reflects the asymmetric degree of the sample
comparing to the average value; the kurtosis function
denotes the deviation of the sample distribution from the
normal distribution. These feature extraction methods in
time domain are all the basic methods in statistics, which
are easy and quick. The definition of each characteristic
is defined as followed, in which n is the number of data
points, zi is the ith data point.

The maximum (minimum) value is defined as

Max ¼ maxðz1; z2; . . . ; znÞ; Min

¼ minðz1; z2; . . . ; znÞ ð14Þ

The average value of the all data is defined as

Z ¼
Pn

i¼1zi

n� 1
ð15Þ

The standard deviation is used to analyze the discrete
degree of data, which is defined as

SD ¼
Pn

i¼1ðzi � ZÞ2

n� 1

 !1=2

ð16Þ

The asymmetric coefficient reflects the asymmetric
degree of the sample around the average value, and could
be defined as

CS ¼
Pn

i¼1ðzi � ZÞ3

ðn� 1Þ � SD2
ð17Þ

The kurtosis function is used to show the deviation
degree of the sample distribution from the normal distribu-
tion, if the bending value is smaller than the standard
value, it means the sample shows a platy kurtosis distribu-
tion; or if the bending value is larger than the standard
value, it shows high kurtosis distribution. The kurtosis
function is defined as

CK ¼
Pn

i¼1ðzi � ZÞ4

ðn� 1Þ � SD4

 !
� 3 ð18Þ

The extraction of those frequency characteristics from
the fluctuant signals of two phase flow refers to the linear
prediction method in speech signal processing (Darwich
et al., 1991; Makhoul, 1975), which has provided a simple
and useful way to extract characteristics in frequency
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domain. The linear prediction method is often used in ana-
lyzing and processing the speech signals, whose basic think-
ing is that: the current value of a signal could be estimated
by the linear combination of values of several prior signals
acquired; the linear coefficients could be worked out by
making the variance (the energy of the error signals)
between the estimated value and the true value of the signal
minimum. These coefficients together compose a linear pre-
diction model, and the number of the coefficients is called
the order of this prediction model. We could study the
smooth envelop of the speech frequency spectrum by using
this linear prediction analysis method. Commonly speak-
ing, the coefficients of the linear prediction model are just
what we want to extract as the frequency characteristics
from multiphase flow.

Assuming the output zt of signals could be expressed as
follow:

zt ¼ �
Xp

k¼1

akzt�k þ G
Xq

l¼0

blU t�l b0 ¼ 1 ð19Þ

where Ut�l is the unknown input signals, ak(1 6 k 6 p),
bl(1 6 l 6 q) and G are all the system parameters, of which,
G is the system gain, and ak(1 6 k 6 p), the coefficients of
the linear combination, are just what we want as the fre-
quency characteristics. Eq. (19) shows that the output zt

is the linear function of current and former inputs, which
is why this is called linear prediction.

As the input signal Ut is totally unknown, the input sig-
nal zt could only be estimated from the former input
approximately, which is

ezt ¼ �
Xp

k¼1

akzt�k ð20Þ

where ezt is the approximation of zt, the deviation between
them is

et ¼ zt � ezt ¼ zt þ
Xp

k¼1

akzt�k ð21Þ

The sum of squares of the deviation is

E ¼
X

t

e2
t ¼

X
t

zt þ
Xp

k¼1

akzt�k

 !2

ð22Þ

To determine ak by the least square method, we have

oE
oai
¼ 0 1 6 i 6 p ð23Þ

That isXp

k¼1

ak

X
t

zt�kzt�i ¼ �
X

t

ztzt�i; 1 6 i 6 p ð24Þ

Eq. (24) shows that by giving fixed zt, the coefficients
ak(1 6 k 6 p) can be worked out from this function group
(including p functions and p unknown variables).

For different fluctuant signals, different characteristics
can be gotten by this method, so that ak(1 6 k 6 p) could
be set as the characteristics of the fluctuant signals of the
two phase flow. Usually, we choose the linear prediction
model with four orders, so the characteristics are a1, a2,
a3, a4.

6.2. The SVM model for water cut prediction

The SVM is usually used to solve the classification prob-
lems, but it could also be applied to the regression prob-
lems by simply introducing the loss function. There are
linear regression and nonlinear regression in SVM, consid-
ering the nonlinear characteristics of the sample in this
study, we chose the nonlinear regression model to improve
the prediction precision.

Assuming the input sample x is an n-dimension vector, k

samples and their corresponding output value y could be
denoted as

ðx1; y1Þ; . . . ; ðxk; ykÞ; xk 2 Rn; yk 2 R ð25Þ

Firstly, we should find a linear fit function,

f ðxÞ ¼ hw � xi þ b ð26Þ

where h � i is the dot product of two vectors.
The best regression function could be gotten by working

out the minimum solution of the function shown as follow:

Uðw; nÞ ¼ 1

2
kw2k þ C

Xk

i¼1

ðn�i þ nþi Þ ð27Þ

where C is the initialized penalty factor, used to control the
penalty level to samples with errors outrun the appointed
scope; n+, n� are the relax factors, showing the upper limit
and lower limit of the sample errors.

We usually adopt the e-insensitive loss function shown
as Eq. (28), which means if the error of sample x is in the
appointed tolerant scope e, it is set to be n, without count-
ing the loss when |n| 6 e; or it is set to be |n| � e.

LeðyÞ ¼
0 for jf ðxÞ � yj < e

jf ðxÞ � yj � e otherwise

�
ð28Þ

By constructing the Lagrange function, we could get
dual equation shown as (29) of Eq. (27),

maxa;a�W ða; a�Þ ¼ maxa;a�

Xk

i¼1

a�i ðyi � eÞ � aiðyi þ eÞ

� 1

2

Xk

i¼1

Xk

j¼1

ða�i � aiÞða�j � ajÞKðxi; xjÞ

s:t:
Xk

i¼1

ðai � a�i Þ ¼ 0; ai; a
�
i 2 ½0;C�; i ¼ 1; . . . ; k

ð29Þ

where a and a* are Lagrange multipliers, K(x,xi) =
u(xi) � u(xj) is called as the kernel function, u(x) is the
mapping function from the sample space to the high-
dimension characteristic space. The kernel function is ex-
pressed as the dot product of two u(x). By adopting the
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kernel function, it is unnecessary to work out specifically
the mapping function u(x), which makes the solving of
nonlinear regression problems be possible.

Solving Eq. (29), the Lagrange multiplier a, a* can be
determined and the regression function is given by

f ðxÞ ¼
Xk

i¼1

ðai � a�i ÞKðxi; xÞ þ b ð30Þ

where the sample xi corresponding to weight value ðai � a�i Þ
that is not zero is called the support vector. Obviously, the
number of the support vectors determines the computa-
tional complexity. For the above SVM regression func-
tions, when |f(xi) � yi| P e, the weight value ðai � a�i Þ is
not zero, then the corresponding sample xi is the support
vector.

The SVM is based on the structural risk minimization
principle, not the traditional empirical risk minimization.
It has considered both the fitness and complexity of the
training sample, which means better generalization ability,
but the parameters chosen for model will also largely influ-
ence the generalization ability of the model. In this study,
we choose e-insensitive function as the loss function of
SVM, in which e is set to 0.001, and we also choose Gauss-
ian function as the kernel function:

Kðxi; xÞ ¼ expð�kx� xik2
=r2Þ ð31Þ

The above equation could also be written as follow:

Kðxi; xÞ ¼ expð�ckx� xik2Þ ð32Þ
By 5-folds cross-validation, we could get c and C as the
best parameters of the model.

6.3. The water cut prediction results

We have extracted 11 kinds of characteristics from 104
groups of conductance signals by using the above method,
that is ff ;Max;Min; Z; SD;CS;CK;a1; a2; a3; a4g, serves as
the input vectors of SVM, symbolized by {x1,x2,x3,x4,x5,
x6,x7,x8,x9,x10,x11}. We have also divided the 104 groups
of data in two parts, in which one part is used for training
and the other are used for prediction. Setting up the precise
prediction model is based on proper training data, if the
training data is not chosen reasonably; there could not be
satisfactory prediction result. In order to make the predic-
tion result more accurate and reliable, training and predict-
ing data should both cover the full range of the flowrate
and water cut, basing on this principle, we chose 88 groups
of data for training, and the remained 16 groups of data are
used for predicting.

Fig. 16 shows the training result of 88 groups of data
and Fig. 17 shows the prediction result of 16 groups of data
under different flow conditions using the SVM, from the
computational result we could know that the average error
for water cut prediction is 0.038, which proves the model
established by the SVM for volume fraction prediction
could give us satisfactory result.
Figs. 18 and 19 are individual phase flowrate computed
according to the predicted total flowrate and water cut,
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respectively. Their average percent errors are 7.36%. The
results of individual phase flowrate indicate it is a feasible
way of measuring gas–liquid two phase flow using the com-
bination of turbine flowmeter, conductance sensors and
soft measurement method.

7. Conclusions

It is a new attempt to measure gas–liquid two phase
flow flowrate employing combination instrument of tur-
bine flowmeter and conductance sensor with petal type
concentrating flow diverter and the results indicate that
this method can realize the flowrate measurement of
gas–liquid two phase flow with satisfactory precision.
Although the original signals and their PDF, as well
as PSD, can give some indications of flow patterns in
the concentrating flow channel at some extent, the clas-
sification results tend to influenced by subjectivities,
which are not suitable for quick and correct classifica-
tion of flow patterns. The method of attractor morpho-
logic characteristics synthetically represents the
behaviors of attractors at different delay time, which
can attenuate the influence of improper selected delay
time. It has the feature of simple calculation and
should be a good method to analyze the engineering
nonlinear fluctuant signal. Because of the high accuracy
and linear classifiable feature it has exhibited on flow
pattern identification, the method can be used for refer-
ence to study complex flow conditions.

Adopted petal type concentrating flow method when
measuring gas–liquid two phase flow, at some degree, the
inhomogeneity of fluid in measurement channel is
improved and the nonlinearity of performance of turbine
and conductance sensors can be decreased. The character-
istics extracted from conductance signals can reflect the
change of volume fraction of flow conditions. The SVM
soft measurement model can fulfill the quick and precise
prediction of water cut based on the data set made up of
conductance characteristics.
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